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ABSTRACT. ST

Since the class of extended decreasing failure rate (EDFR) life distri-
butions (i.e., distributions with support in [0,=]) is compact and convex,
it follows from Cnoquet's Theorem that every EDFR life distribution can be
represented as a mixture of extreme points of the EDFR class. We identify
the extreme points of this class and of the standard class of decreasing
failure rate (DFR) life distributions. Further, we show that even though
the convex class of DFR life distributions is not compact, every DFR life
distribution can be represented as a mixture of extreme points of the DFR

class.
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1. Introduction and Summary. %th RSN S

The class of decreasing failure rate (DFR) distributions plays an
important role in the theory and application of reliability, biometry, and
other fields of statistics. (See, e.g., Barlow and Proschan, 1975, Chaps.
3 and 4, and Proschan, 1963).

Such distributions govern the lifelengths of systems which do not

age adversely over time in the sense that the conditional survival proba-
bility given tne age of the system is an increasing function of the age.
For example, DFR distributions _overn the lifelengths (i) of metals sub-

ject to "work-hardening", (ii) of many solid state components, (iii) of

businesses, (iv) of mixtures of exponential distributions, etc. .

The DFR class is convex, as is the class of extended decreasing failure
rate distributions (EDFR) which contains distributions placing mass at «,
This latter class is also compact in the topology of weak convergence of
probability measures. (See Section 2,)

From the (rei:i-Milman Theorem and Choquet's Theorem, we know that the
basic building blocks of convex compact sets are their extreme points. In
particular, it follows from Choquet's Theorem, stated in Section 2, that
the set of extreme points is tne smallest set of EDFR distributions with
the property tnat every EDFR distribution may be represented as a mixture
of its elements,

The main purpose of this paper is to identify tne extreme points of

the EDFR class (Section 3). Tney are those EDFR distributions having
failure rate functions whose derivatives are close to zero in an appropiate

sense. More specifically, an EDFR distribution F is not an extreme point of
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the EDFR class if and only if (i) 0 < F(0) < 1, (ii) 0 < F(w) < 1, or
(iii) the denivative of the failure rate function is a.e, uniformly
bounded away from 0 in some interval (see Theorem 3.1).

Since the DFR class is an extremal subset of the EDFR class, it
follows that a distribution F is an extreme point of the DFR class if and
only if F is an extreme point of the EDFR class and it places no mass at
=, Thus the extreme points of the DFR class are also identified (see
Corollaxy 4.2).

In Theorem 4.5 we show tnat even though the convex class of DFR
distributions is not compact, the set of extreme points of this class is
the smallest set of DFR distributions with the property that every DFR

distribution may be represented as a mixture of its elements.
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2. Preliminaries.

Let F be an extended life distribution; i.e., F is a distribution

function possibly placing mass at « such that F(0-) = 0. When an extended
life distribution places no mass at », it is simply called a life distri-

bution. The function F = 1 - F is called the survival probability, and

Kf = - n F is called the hazard function. If RF is absolutely continuous
on every closed interval contained in (0,«), then any measurable function
Tg almost everywnere (a.e.) equal to R!, the derivative of RF’ is called

a faiiure rate function. (Throughout, measureable means Borel measureable

and all measures are Borel measures). When F has a density f, tue failure
rate function rp = £f/F a.e. . Wnen the distribution F is clearly under-
stood, the subscript f will be suppressed.

Definition 2.1. Let F be an extended life distribution. Then F is

said to be an extended decreasing failure rate (EDFR) distribution if R

is concave on (0,~). If an EDFR distribution is a life distribution, it

is simply called a decreasing failure rate (DFR) distribution.

The set of EDFR distributions will be denoted by D. An EDFR distri-
bution F can have no jump on (0,») since R is concave on (0,=), but can
have a jump at 0. Also, notice that we consider 60, the distribution
degenerate at 0, to be an EDFR distribution. The hazard function of an
EDFR distribution other than 60 is finite and concave on (0,~). Conse-
quently it is absolutely continuous on every closed interval of (0,~) and
has a right ..rivativ: which exists everywhere on (0,%). In the remainder
of this paper the failure rate function of an EDFR distribution other than

6° is always taken to be this right ..wviviciv: and is, therefore, a de-
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creasing function on (0,®) with .criviiiv:c a.e. less than or equal to

zero. For convenience we shall define r to be identically zero when F = 50.
Let L denote tne class of extended life distributions, and o(L)
.
denote the smallest o - field of subsets of L such that the map F—>F(t)
from L into {0,1] is o(L) - measurable for all t ¢ [0,=].

Definition 2.2. An extended life distribution F is a mixture of

elements in a set S e L if S ¢ o(L) and there is a probability measure Mp

defined on o(l) such tnat

G.1 up(S) =1

and

F(t) = IG(t)uF(dG) for all t ¢ [0,=].

Wnen (3.1) holds, u is said to have support S. i:

Remark 2.3. It can be shown that o(L) is the Borel o - field of L,
when L is given the topology of weak convergence of probability measures.
In particular, Mg i3 a Borel measure.

We .recall that an element x of a convex set K is an extreme point of

K if x = py + (1-p)z with y, z, ¢ Kand p € (0,1) implies that y = 2 = x,

We need Choquet's Theorem, stated below, to show that every EDFR life
distribution can be represented as a mixture of extreme points of the
EDFR class.

Choquet's Theorem (Phelps, 1966, pp. 19-20). Let K be a metrizable,

compact, convex subset of a locally convex space X. Let X, € K. Then there

is a probability measure My supported by the extreme points of K such that
0

L(xy) = fL‘*)"xo(dx)
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for all continuous linear functionals L defined on X.

In this paper we take X to be M[0,»], the space of finite signed
measures on [0,»], with the topology of weak convergence, and K to be V.

It is well known that with the above topology, M[0,»]:is locally
convex and D is metrizable, a convenient metric being tihe Lévy metric. An
argument using Helly's Compactness Theorem and the fact that pointwise
limits of concave functions are concave shows that D is compact. Tne con-
vexity of D follows since the family of positive log-convex functions is
closed under addition and multiplication (see Roberts and Varberg, 1973,
Section 13).

To see that every EDFR can be represented as a mixture of extreme
points of D, we notice that L:M[0,»] —> R defined by L(v) = ff(x)v(dx) is
a continuous linear functional on M[0,~] for each f ¢ C[0,»]. Hence the
conclusion of Choquet's Theorem implies that for every EDFR distribution F
there exists a probability measure, Mp» supported by the extreme points of
D such that [£(x)F(dx) = [[f£(x)G(dx)Iu(dG) for all f € C[0,»]. Since

C[0,»] is a separating class of functions (see Breiman, 1968, p. 165) we

have that F(t) = jG(t)uF(dG) for all t ¢ [0,). Equivalently, by Remark 2.3,

every EDFR distribution is a mixture of extreme points of D. Furtner, by

the definition of extreme point, we see that the set of extreme points of

D is the smallest set of EDFR distributions with the property that every
EDFR may be represented as a mixture of its elements.

We identify the extreme points of D in the next section.
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3. The Extreme Points of the EDFR Class. g

In this section we identify E, the set of extreme points of V. In

nt o

essence, we show that an EDFR distribution F is not an extreme point of

J if and only if either (i) 0 < F(0) < 1, (ii) 0 < F(=») < 1, or (iii)r',
the derivative of the failure rate function, is a.e. uniformly bounded away
from 0 in some interval. More precisely, we show the following theorem.

Theorem 3.1. The EDFR distribution F is an extreme point of the set
of EDFR distributions if and only if either (i) F is degenerate at 0, or
at », or (ii) F(0) = 0, F(=-) =1, and {t: r'(t) exists, a <t s b, and
r'(t) > - §) has nonzero Lebesgue measure for all 0 < a < b and 6§ > 0,

Let 6 _denote the distribution degenerate at .

Remark 3.2. The degree of smoothness of r for F ¢ E characterizes
certain types of extreme points. For example, let F ¢ E\{So,sw}. Then (i)
r' is continuous if and only if F is an exponential distribution, and (ii)
r' has a countable number of isolated discontinuities if and only if F is
piecewise exponential, that is, R is piecewise linear. We remark that the
EDFR piecewise exponentials are dense in 0. This example therefore shows that

E is a dense subset of V.

Two other types of interesting life distributions which are extreme
points of D are given below. These life distributions are extreme points of
D since their failure rates are decreasing functions with derivatives almost
everywhere equal to 0, Notice that the failure rate function in (iii)

below is discontinuous in a countable dense subset of [0,«) while the fail-

ure rate function in (iv) below is continuous everywhere on [0,«).
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(iii) Let :&j);=1 be a countable dense subset of [0,») and

{bj};=1 be a scquence or positive numbers such that ij < = and

o1 i 2 AR ST IRINE

-f:r(u)du

zajbj =w, Fortz20, let r(t) = b Then F(t)

j I{ajzt}' 1-e

is an extreme point of U since r' = 0 a.e. on [0,%), F70)

0, and F(»-) = 1, ?
(iv) Let r(t) be positive, decreasing, continuous, and singular (with
respect to Le’ 2sgue measure)., Further assume that f:r(u)du = «, Then

r' = 0a.e. on [0,»), F(0) = 0, and F(»-) = 1. Consequently,

Nl Y B, A

. -firu)du
F(t) =1 - ¢ s an extreme point of D.
In proving Theorem 3.1, ve use tne following notation. For each %
f
FeD let EF = {t: ré exists at t}, Denote the LeLesgue measure by m. Let i
0= (F ¢ D\{GO,G”}: m(t e EF: astsband r'(t) > - §) > 0 for all i
¢
0<a<band all § > 0}. Let = {Fel: F(0)=0 and F(w-)=1}, i.e., C is - |
} the class of life distributions which place no mass at 0. f
In this notation, Theorem 3.1 is equivalent to ,
? i
' (3.1) E= (0nC) v {Go,éw}. '
W= prove (3.1) by showing (i) Ec O u {6,,8,) (Lemma 3.3), (ii) E< Cu {6,,8,}
(Lezmz 3.°), end (ii1) E> O n C) v {60,60} (Lemma 3.5).
g 3
f 1 Lemma 3.5, EcOuvu {50’6»} k
| Proos. It is ~a92i. tu 3ucy tuwat if " eDand F ¢ O v {60’6m}’ then F ¢ E.
§ To prove i ¢ E, it suffices to show that there exist F, and F, ¢ D such that

(F1+F2)/2 = [,

T

Let FeDand F ¢ 0 u {Go,ém}. Then there exists an interval [a,b],

o -

(0<a<b), and 2 value § > O such that r'(t) < - § a.e. on [a,b]. Without

loss of generality, we may assume that r is continuous at a and b, For each

]

. e
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postitive integer n, let ln(x) be = %-(x-a)s(b-x)3 for a <sxsband 0

otherwise.

1]

oSk

Choose n so that sup ln < fn 2. Let R R - ln and let

1
E R+ c(ln), where c(x) = -ln(Z-ex) for x < ln 2. We show that for

nR2

n sufficiently large, say n = n,» F

1-exp{n Ri} (1=1,2) are two different
()

well-defined EDFR distributions such that (F1+F2)/2 = F,

i

Since R is concave on (0,=), it follows that r and r' exist a.e. on

. o n - AR A bt A 4 e

(0,=). Further a.e. on [0,»), we have that

Rl =T A

Ry =T+ c'(L)L), {;
% RU = xt - g, and |

nR; =T+ c'(ln)°£u + c"(tn)z.

Bl £ ik

[ Since r'(t) < § a.e. on [a,b], from the continuity of ¢*' and c", it

o’ n Ri(t) < -6/2 a,e, on
()

[a,b](i=1,2). Thus, writing Ri for n Ri(i-1,2), we have that Ri is strictly
o

3 follows that for n sufficiently large, say n = n

concave on [a,b]. We notice that R and Ri and also their derivatives agree ’
.ﬂ

E off (a,b). Thus Ri is an increasing function on [0,»), is concave on (0,»), o

'Ri
1 -e (i=1,2) are two

and satisfies Ri(w-) o, It follows that Fi

3 different well-defined EDFR distributions.
We show that (F1+F2)/2 = F, By the definitions of c, Rl’ and R2' we

see that
(R-R,)

R, =R - £n (2-e ).

b 2
Hence
r . -R

e % e'R(z-e

(R-R,) -R
1 ) = 2eR - o I




Lemma 3.4, EcCu {éo,éw}.
Proof. Let F ¢ C u{ﬁo,ém}. Then either (i) F (0) = a, where

0 <a <1, or (1i) F(=) = B, where 0 < B < 1, Assume (i) holds. Then

. _ [ _E-F(0) : . . F-F(0) ,
i a 60 + (1 a)[ T-F(0)) ° Since F1 z 60 and F2 e ()) are boti DFR
i+ loutions, F ¢ E. A similar argument shows F ¢ E when case (ii) holds. ||

Lemma 3.5. (0 nC) v {GO,GQ} c E.
Proof, Let Fe (0 nC) v {Go’cw}‘ We show that F ¢ E. If F = 60 or
8_, then clearly F ¢ E. Assume then that F ¢ 0 n C. Since D is convex, it

suffices to prove that

(3.2) F = (F1+F2)/2 with Fl’ F2 e

implies that

(3.3) F. =F

Thus assume (3.2) holds. We show (3.3) follows.

For the distribution Fi (i=1,2), let r, be the failure rate function and
Ri be the hazard function. Let t ¢ M & {t: ri
m(M°) = 0 and F ¢ 0, it follows from the definition of O that for each ' ;

and ré exist at t}. Since

positive integer n,

m([t,t+n'1] nMn{t: r'>-n'1}) > 0. ?

Hence we may choose a sequence {tn} < M such that t +t and r'(t )+ 0

n
as n + «», By a subsequence argument we may also assume that the sequences
{ri(tn)} and {ri(tn)} both have limits (possibly infinite). Now reversing |

the steps in the last paragraph of the proof of Lemma 3.3 we can show that

(Rz-R)(tn) 'c((R°R1)(tn))’ where c¢(x) = -ln(Z-ex) for x < In 2. Differ-




© vavens

?

10
entiating twice and taking limits, we get

(3.4) lim ri(tn) = -c'((R-Rl)(t))-(lim ri(tn)
+ SM(R-R}) (1))+ (x () -1, (t))7,

since r'(tn) + 0 and tn + tasn-+oand R, Rl’ T, and r, are continuous at t.

Now for x < In 2, ¢'(x) = ex/(z-ex) > 0 and ¢'(x) = Zex/(z-ex)2 > 0,
Hence, using the fact that lim ri(tn) s 0, we see that the expression on the
right of (3.4) is nonnegative. Since the term on the left of (3.4) is non-
positive, it follows that the expression on the right of (3.4) is equal to 0.
We conclude that r(t) = rl(t) for t € M. Reversing the roles of R, and R2

1
above, we get r(t) = rz(t) for t ¢ M. Thus

(3.5) r=r =r,a.e. on (0,=).

Now F(0) = 0 implies that Fl(o) = FZ(O) = F(0) and, consequently, that

R(0) = RI(O) = RZ(O)' It follows by (3.5) that R = R1 = Rz or, equivalently,

that F = F, = F,. ||
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4. Convex Extremal Subscts of D.

In this scction we identify the extreme points of two convex sub-
classes of D, namely, (i) DP, the class of (proper) UFR distrilutions
(Corollary 4.2), and (ii) 7, = {FeD:rF is continuous on (0,«)} (Corollary

4.3). In addition in Theorem 4.5, we show that every DFR life distribu-

tion can be ropresented as a mixture of the extreme points of Dp.
To identify the extreme noints of Dp and DC we need Lemma 3.1 below
concerning extremnal subsets. Recall that a subsct K' of a convex set K

is an extremal subset of K if x = py + (l-p) z with y, z ¢ ¥ and p € (0,1) f i

implies that y erd z ave in K',
Let ext K denote the set of extreme voints of K.

Lemna 4.1. Let K' be a convex ex'remal subset of a convex set K. Theu '
ext K' = K' n ext K,

We cmit tie clementary proof of this lenma.

From Lemn: 4.1 it follows that to identify the extreme points of Dp
and DC is is only necessary to show that these classes are convex exiremal
svbuaes of 10,

Since it is il:miedicte that DP is a convex extremal subset of D, we
have the following corollaxry of Lemma 4.1,

Corollary 4.2. The DFR distribution I is an extreme point of the DFR

class if and only if either (i) F is degenerate at 0, or (ii) F(0) = 0
and {t: r'(t) exists, a s t < b, and r'(t) > - § has nonzero Luiusguc
measure for all 0 < a <band § > 0,

To show that DC is an extremal subset of D we need the following

lemma. Llet r, T and r, be the failure rates of F, Fl, and F2.



g

IR

ot an, PR .
. i " G e L L T O P

12

Lemma 4,3. Let F = pF1 + (l-p)F2 for some p ¢ (0,1) and Fl, F2 e D.
Let r be continuous at t. Then r1 and T, are continuous.

Proof. Assume that either r; or r, is not continuous at t. We
show that this contradicts the conzinuity of i+ at‘t.

Since v, and T, arv decreasing and F1 and F2 are continuous on (0,%),

1
then

r (1) = [F(0)1 Ipr, eF (8) + (1-p) 1, (t4)F,(t)]

<IF(6) 17 Ipr; (€)F, (8) + (1) 7, (£)F,(0)] = x(t-),

which contradicts the continuity of r at t. ||

It is clear from Lemma 4.3 that DC is an extremal subset of . Also
a straightforward argument similar to that in the proof of Lemma 4.3
shows that DC is convex, Hence we obtain the following corollary of

Lemma 4.1.

Corollary 4.4. The set of extreme points of U; is E n DS'

Kemark 4.5. Let DA z {FeD: g is absolutely continuous on every
closed interval contained in (0,=)}. It can be shown that DA is also a
convex extremal subset of 0, and consequently that ext DA = En Dye

“g conclude this section with the following representation theorem

for the DFR class.

Theorem 4.5. The life distribution F is DFR if and only if F may
be represented as a mixture of distributions in ext 0p. Further ext DP
is the smallest set with the property that every DFR may be represented

as a mixture of its elements.

Proof. Let F ¢ Dp. Then F € D and, therefore, by the result stated

RN o



PN e e |

‘ i
v T gy £

R g e Piee

e

13

in the next to the last paragraph of Section 2, we have that

F(t) = [G(t) up(dG) for all t e [0,=], where vg is a probability measure
suéh that uF(E) = 1. Since F(»-) = 1 by the Bounded Convergence Theorem,
1= [G(=-) Wg(dG). Hence u (EnD,) = u_{GeE:G(»-) = 1} = 1. Since

ext DP =En DP by Corollary 4.2, the conclusion of the first part of
Theorem 4.5 follows. The second part of Theorem 4.5 is an immediate

consequence of the definition of an extreme point. ||
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26 "TASGTTACT

Since the class of extended decreasing failure rate (EDFR) life distributions :

(i.e., distributions with support in [0, =]) is compact and convex, it follows from
“hozuet's Theoren that every EDFR life distribution can be represented as a mixture
We identify the extreme points of this class and

of extrem2 poirnts of the EDFR class.

2f the standard class of decreasing failure rate (DFR) life distributions.
show that even though the cnnvex class of DFR life distributions is not compact, every
DFR life distribution can be represcnted as & mixture of extreme points of the DFR class.

Further, we




